Robertson GA, Clemosn WM, Griffith TN (2023) Being Black in biophysics. Biophys J. Mar 28: S0006-3495(23)00198-4. doi: 10.1016/j.bpj.2023.03.025.

Mays A, Byars-Winston A, Hinton A Jr, Marshall AG, Kirabo A, August A, Marlin BJ, Riggs B, Tolbert B, Wanjalla C, Womack C, Evans CS, Barnes C, Starbird C, Williams C, Reynolds C, Taabazuing C, Cameron CE, Murray DD, Applewhite D, Morton DJ, Lee D, Williams DW, Lynch D, Brady D, Lynch E, Rutaganira FUN, Silva GM, Shuler H, Saboor IA, Davis J, Dzirasa K, Hammonds-Odie L, Reyes L, Sweetwyne MT, McReynolds MR, Johnson MDL, Smith NA, Pittman N, Ajijola OA, Smith Q, Robinson RAS, Lewis SC, Murray SA, Black S, Neal SE, Andrisse S, Townsend S, Damo SM, Griffith TN, Lambert WM, Clemons WM Jr. Juneteenth in STEMM and the barriers to equitable science. (2023) Cell. Jun 8;186(12):2510-2517. doi: 10.1016/j.cell.2023.05.016.

Nguyen PT, Nguyen HM, Wagner KM, Stewart R, Singh V, Thapa P, Chen YJ, Lillya MW, Ton AT, Kondo R, Ghetti A, Pennington MW, Hammock B, Griffith TN, Sack JT, Wulff H, Yarov-Yarovoy V. (2022) Computational design of peptides to target NaV1.7 channel with high potency and selectivity for the treatment of pain. Elife. Dec 28;11:e81727. doi: 10.7554/eLife.81727.

Espino CM, Lewis CM, Ortiz S, Dalal MS, Garlapalli S, Wells KM, O'Neil DA, Wilkinson KA, Griffith TN. (2022) Nav1.1 is essential for proprioceptive signaling and motor behaviors. Elife. Oct 24;11:e79917. doi: 10.7554/eLife.79917.

Lewis CM & Griffith TN. (2022) Mechanisms of Cold Encoding. Curr Opin Neurobiol. 75:102571. doi: 10.1016/j.conb.2022.102571.

Muñoz MF, Griffith TN, Contreras JE (2021). Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal. Dec;17(4):549-561.

2020-2024


2015-2019

Griffith, TN, Docter, T. A., & Lumpkin, E. A. (2019). Tetrodotoxin-sensitive sodium channels mediate action potential firing and excitability in menthol-sensitive Vglut3-lineage sensory neurons. Journal of Neuroscience39(36), 7086-7101.

Hoffman, B. U., Baba, Y., Griffith, TN, Mosharov, E. V., Woo, S. H., Roybal, D. D., ... & Lumpkin, E. A. (2018). Merkel cells activate sensory neural pathways through adrenergic synapses. Neuron100(6), 1401-1413.

Griffith TN & Swanson GT (2015) Identification of critical functional determinants of kainate receptor modulation by auxiliary protein Neto2. J Physiol. 593(22):4815-33.


2014 +

VanLeeuwen JE, Rafalovich I, Sellers K, Jones KA, Griffith TN, Huda R, Miller RJ, Srivastava DP, Penzes P (2014) Coordinated nuclear and synaptic shuttling of afadin promotes spine plasticity and histone modifications. J Biol. Chem. 289(15):10831-42.

Inestrosa NC, Tapia-Rojas C, Griffith TN, Carvajal FJ, Benito MJ, Rivera-Dictter A, Alvarez AR, Serrano FG, Hancke JL, Burgos PV, Parodi J, Valera-Nallar L (2011) Tetrahydrohyperforin prevents cognitive deficit, Ab deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1"E9 model of Alzheimer’s disease: A possible effect on APP processing. Transl Psychiatry 1: e20;doi:10.1038/tp.2011.19.

Hall AC, Griffith TN, Tsikolia M, Kotey FO, Gill N, Humbert DJ, Watt EE, Yermolina YA, Goel S, El-Ghendy B, Hall CD (2011) Cyclohexanol analogues are positive modulators of GABA(A) receptor currents and act as general anesthetics in vivo. Eur J Pharmacol 667(1-3):175-81.

Griffith TN, Varela-Nallar L, Dinamarca MC, Inestrosa NC (2009) Neurobiological effects of hyperforin and its potential in Alzheimer's Disease Therapy. Curr Med Chem 17(5):391-406.

Watt, E. E., Betts, B. A., Kotey, F. O., Humbert, D. J., Griffith, TN, Kelly, E. W., ... & Hall, A. C. (2008). Menthol shares general anesthetic activity and sites of action on the GABAA receptor with the intravenous agent, propofol. European journal of pharmacology590(1-3), 120-126.